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The low-temperature magnetization of the S = i Heisenberg ferromagnet has been investigated by the 
method of double-time temperature-dependent Green functions. The equation for the lowest order Green 
function and the equation for the next higher order Green function, truncated to order {n) = \—(Sz), were 
solved. The low-temperature magnetization so obtained was found to agree with that obtained by Dyson. In 
particular, an argument is presented which suggests that the Tz term, which has previously plagued this 
method, does indeed vanish. 

TH E magnetization of a Heisenberg ferromagnet in 
the low-temperature region has been rigorously 

studied by Dyson1 using the method of spin waves. 
More recently various authors have applied the method 
of double-time temperature-dependent Green functions 
to this problem.2-8 In the case S—% there is a dis
crepancy of order Ts in the magnetization which arises 
from an error in the decoupling approximation used to 
solve the Green-function equation of motion. Tanaka 
and Morita9 have reported the elimination of the Tz 

term by solving the equation of motion for the higher 
order Green function. While their final result appears 
to be correct, we feel that they did not make the correct 
approximations in deriving their equation of motion, 
and hence lost some insight into the results. 

Expressing the spin operators of the / t h site by the 
Pauli operators 

Sf*+iSf"=Sf+=bf, 

Sf^i-b/bf- -nf, 
(1) 

satisfying the anticommutation relations 

{ M / f > = i ; {*/,*/> = { * / W ) = o , 

and the commutation relations 

C * / , V ] = « . / ( l - 2 » / ) ; 
[bf,ng~] = 8gfbf; [bf\ng~] = - 8gfb/, (2) 

and defining an exchange sum 

/ ( k ) = L e i k , ^ / ( f - m ) , where 7(0) = 0, (3) 
/ 

the Heisenberg exchange Hamiltonian with an external 
field H becomes 

3C=D*ff+i/(0)]2>/ 
/ 

- l E / ( J - m ) ( 4 / t J w + » / » w ) . (4) 
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We will consider the two Green functions Gg/= {{bg) bg/)) 
and Ggimf= {{bjbibm\ b/)). The departure of the mag
netization from saturation is then given by 

<»>= 
i /•• 

~Y.il 
[Ggg(E+U)-Ggg{E-h)-] 

•dE. (5) 

The reader is referred to Zubarev3 for details of the 
Green-function method. 

The Green functions are determined from their 
equations of motion: 

I 
= — 8 „ < l - 2 » / > - J Z I(i-m)Gmf 

27T m 

+ E Hi---)LGaomf--GmmgfJi (6) 
m 

and 

\_E-ixH-y{<d)-]Gglrnf 

= (l/2w)8lf(b0ibm-2b0*nfbm) 

+ (l/27r)dmf(bg%-2bg%nf) 

+h E l(£-v)GPimf- h E i(*--v)G0iPf 
V V 

— 2 E I(\—V)G{,Vmf 
V 

+h E I(&—v)((bJ[bibmnp+npbg
tbibm 

— 2bjngbibm)bfi)) 

— J E I(m-p)((bg
fbibmnp+npbg%bm 

V 

— 2bg
1[binmbp;bf[)) 

— 2 E I(l-p)((b9
fbibmnp+npbgrbibm 

V 

-2bMbmbp;b/)). (7) 

At this stage we must make some decoupling approxi
mation in Eq. (7). We notice that Ggf has a leading term 
of order 1 and a next higher term of order (n) which is 
small at low temperatures. The function Ggimj has a 
leading term of order (n) and higher terms which are of 
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order (n)2 except for certain values of the indices. We 
rewrite Eq. (7) keeping only the lowest order terms. 
Consider for example (bgfb/bfbm). If / = m or f=g this 
term is zero, otherwise it is of order (n)2. However, 
(bg^bib/bf^ib^b/bfb^+difibg^bi), so we keep the 
hfibg^bi). This is where we differ from Tanaka and 
Morita who dropped all the products of four operators 
without regard to their order. They partially compen
sate for this error by carrying a subsidiary condition 
along, namely Ggimf=0 iil=m. 

After a similar analysis of the last three sums in Eq. 
(7) we are left with an approximate equation of motion 

LE-fxH-^J(0)2Gglmf 

= (l/2ir)««/<V*«>+(l/2ir)5m/<iA> 

-(2/2T)fiw/«i/<V*i>+i E Hi-p)GPimf 
V 

- \ E l(™-V)GglPf-l E I(l-p)Ggpmf 
P V 

-I(m-l)Ggimf+Smi £ I(m-v)Ggipf. (8) 
V 

The equation of Tanaka and Morita is identical except 
for the absence of the third and eight terms on the right-
hand side of Eq. (8). However, their approximate solu
tion is exactly what we would obtain by dropping the 
seventh and eighth terms in our Eq. (8) but retaining 
the third, -(2/27r)8rnfdif(bg%). The effect of our third 
term appears in Tanaka and Morita's solution through 
their subsidiary condition. Notice that Eq. (8) auto
matically gives Ggiif=Q. 

The solution is most easily found by expanding Ggf 
and Ggimf in reciprocal lattice vectors: 

G * / = - E e x p [ a - ( g - f ) ] G x , 
N x 

G,i»/=— E exp[a - (g - f ) ] exp[a , - ( l - f ) ] 
N3 wx" 

Xexp[a''-(m--f)]Gxvv< 
(9) 

(bg%)= : — E e x p [ ^ - ( g - f ) > x , 
N x 

•f 
j —< 

•» GHE+i<d-Gx(E-it) 

The equations of motion become 

-dE, 

1 
2T 

+ — I [ / ( X - v - v ' ) - / ( v + v ' ) ] G „ r t ^ . 
N* yv' 

(10) 

tE-EM-EW)+E(WG^ 

N 
=—[*(*+* , )+*(*+a/ , )>x 

2TT 

2^x 1 
— £ [ E ( * " + k ) 

2TT N k 

+E(*'-k)-2E(k)]Gxx<^x"+*. (U) 
If we solve Eq. (11) approximately by dropping the 

sum over k we have 

^ . , * . . o = nx (12) 

and 

[JE-E(3t)]Gx= 

2TtE-EW)-E(X")+E(X)~] 

l - 2 < » > 

2w 

1 / ( « - / ( 0 ) + / ( v ) - / ( 3 l + v ) 
H— E »* 

AT > 2*-[£-£(30] 

1 

— E-
/ ( X - v - v O - A v + V ) 

-2^„. (13) 
N2 *>' 2ir[E-£(vO--E(3t-v-vO+^(v)] 

After substituting this result into Eq. (5) we find that 
the second term on the right side of Eq. (13) is the cor
rect energy renormalization which affects (n) to order 
JT4. We have shown10 that the third term on the right 
cancels the contribution of the — 2{n)/2ir in the first 
term through order T3, in agreement with Tanaka and 
Morita. The problem remaining is to investigate the 
effect of the last term in Eq. (11), that is, the sum over 
k. We have iterated this equation twice, substituted the 
results into Eq. (5), and found no contribution larger 
than T4. It seems possible that the iterations are con
vergent in this sense but a definite proof is still lacking. 

It should be pointed out that Gxx'X"0 does give 
{bgjfbjbibm)=0 but does not give (b/bgfbibi)=0. For 
that we must include the effect of the eighth term of 
Eq. (8). It can be shown that inclusion of the first itera
tion of Eq. (11) gives <6/+6̂ +6z6«) = 0 through order Tz or 
(n)2, although as we have said it does not contribute to 
(n) until order T4. This can be explained by the fact 
that terms such as \jgggf are excluded completely from 
the sum in Eq. (6) and hence do not need to be known 
exactly, while Gggmg does contribute and must be known. 
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